科目情報
科目名 幾何学本論I 
クラス − 
授業の概要 本講義は、曲線というものを解析にとらえる微分幾何学・微分位相幾何学の入門である.まず、2または3次元ユークリッド空間内の曲線を関数で表示し、その特徴を分析する概念・方法を紹介する.

さらにもっと一般的な曲面については、幾何学本論IIで学ぶのだが、本講義はその導入にもなっている. 
授業の到達目標 平面・空間曲線の曲率と関連基礎事項を理解する. 
授業計画
内容
1平面曲線の基本的考察 
2正則曲線 
3弧長パラメーター 
4(平面曲線に対する)フルネ−セレの公式 
5曲率の幾何学的意味 
6平面曲線のまとめ 
7演習解説 
8空間曲線の正則曲線 
9正則曲線 
10弧長パラメーター 
11フルネ−セレの公式 
12空間曲線のまとめ 
13曲率の計算方法 
14演習解説 
15必要に応じて補足 
 
テキスト・参考書 じっくり学ぶ曲線と曲面 −微分幾何学初歩−
(ISBN4−320−01788−9)
中内伸光 著 
自学自習についての情報 講義時のときにアドバイスをします. 
授業の形式 講義形式で行う. 
評価の方法(評価の配点比率と評価の要点) 小テスト20%, レポート10%, 期末試験70%. 
その他 微積分や線形代数を使うので、トポロジー中心だった幾何学序論I, IIとはちょっと感じが違います.解析学序論I・代数学序論Iの内容を理解していない学生は、本講義の内容を理解するのは難しい.卒業研究で幾何を専攻を考えているものは必修である.