科目情報
科目名 解析学講究II 
クラス a 
授業の概要  古典的な解析学では、主として個々の関数や方程式の性質を取り扱ってきたのに対して、本講義では関数の集合である関数空間を考え、そこにおいて定義される作用素の性質を学習し関数解析の理論を展開する。Banach空間、Hilbert空間、線形作用素、線形汎関数の理解を目的とする。 
授業の到達目標 ・Banach空間、Hilbert空間、線形作用素、線形汎関数の定義や性質について説明できる。 
授業計画
内容
1線形空間 
2Banach空間 
3Banach空間の例(数列空間、関数空間) 
4Banach空間の例(Hilbert空間) 
5線形作用素の定義 
6連続性と有界性 
7逆作用素 
8作用素の和と積 
9線形作用素の例 
10一様有界性定理 
11開写像定理 
12閉作用素 
13線形汎関数の定義 
14幾何学的性質 
15Hahn-Banachの拡張定理 
 
テキスト・参考書  テキスト
・関数解析 (ちくま学芸文庫)、宮寺 功 著、筑摩書房、ISBN-13:978-4-480-09889-4

 参考書
・函数解析 (近代数学講座)、竹之内 脩 著、 朝倉書店、ISBN-13:978-4254116571(復刊版)
・関数解析、宮島 静雄 著、横浜図書、ISBN-13:978-4-946552-18-2
・International Symposium on Computational Science 2011, S. Omata-K. Svadlenka, Gakkotosho, ISBN-13:978-4-7625-0459-4
・Nonlinear Analysis in Interdisciplinary Sciences, T. Aiki-T. Fukao-N. Kenmochi-M. Niezgodka-M. Otani, Gakkotosho, ISBN-13:978-4-7625-0461-7 
自学自習についての情報  口頭発表の部分について必ず自学自習をして講義に望むこと。詳細は講義開始後、詳細をweb上に用意する予定。 
授業の形式  自学自習し、口頭発表するゼミ形式。 
アクティブラーニングに関する情報  学生が主体的に学びを進める輪読形式のゼミを行う。 
評価の方法(評価の配点比率と評価の要点)  毎時間のゼミでの理解度を評価。筆記試験なし。 
その他(授業アンケートへのコメント含む)  解析学序論I、解析学序論II、微分方程式、偏微分方程式を受講していることが望ましい。内容や進度などの詳細はゼミ生と相談して決定する。 
担当講師についての情報(実務経験)  イタリアパヴィア大学での研究員を経て、2003年に博士(理学)を取得。中学校、高等専門学校での勤務を経て、2009年に京都教育大学に准教授として赴任。2016年より現職。詳しくは「http://math.kyokyo-u.ac.jp/~fukao/fproj.html」を参照。