科目名 |
解析学特論I |
クラス |
− |
授業の概要 |
関数解析は無限次元空間における作用素解析である。その抽象的な理論は偏微分方程式論に現れる具体的な問題、特に解の存在定理へ応用することができる。ここでは、その準備としてL^p空間、Sobolev空間とその周辺の理解を目的とする。 |
授業の到達目標 |
・L^p空間の基本的な性質が説明できる。 ・Sobolev空間の基本的な性質が説明できる。 |
授業計画 |
回 |
内容 |
1 | The space L^p, The Lebesgue Measure in R^n |
2 | Distributions and weak derivatives |
3 | Completeness of L^p spaces, Approximation by continuous functions, Separability |
4 | Mollifiers, Approximation by smooth functions |
5 | Precompact sets in L^p |
6 | The uniform convexity of L^p |
7 | The normed dual of L^p |
8 | Sobolev spaces W^{m,p} |
9 | Duality, the space W^{-m,p'} |
10 | Approximation by smooth functions |
11 | Equivalent norms, Concept of a trace |
12 | Sobolev embedding theorem |
13 | Poincare inequality |
14 | Compactness theorem of Rellich-Kondrachov |
15 | Applications |
|
テキスト・参考書 |
テキスト ・Sobolev Space 2nd Edition, Robert A. Adams, Academic Press, ISBN-13:978-012044143-3 ・Direct Methods in the Theory of Elliptic Equations, Jindrich Necas, Springer, ISBN-13:978-3-642-10454-1
参考書 ・ソボレフ空間の基礎と応用、宮島 静雄 著、共立出版、ISBN-13:978-4-320-01828-0 |
自学自習についての情報 |
口頭発表の部分について必ず自学自習をして講義に望むこと。詳細は講義開始後、詳細をweb上に用意する予定。 |
授業の形式 |
自学自習し、口頭発表するゼミ形式。 |
アクティブラーニングに関する情報 |
学生が主体的に学びを進める輪読形式のゼミを行う。 |
評価の方法(評価の配点比率と評価の要点) |
毎時間のゼミでの理解度を評価。筆記試験なし。 |
その他(授業アンケートへのコメント含む) |
解析学講究I、解析学講究IIを受講していることが望ましい。内容や進度などの詳細はゼミ生と相談して決定する。 |
担当講師についての情報(実務経験) |
イタリアパヴィア大学での研究員を経て、2003年に博士(理学)を取得。中学校、高等専門学校での勤務を経て、2009年に京都教育大学に准教授として赴任。2016年より現職。詳しくは「http://math.kyokyo-u.ac.jp/~fukao/fproj.html」を参照。 |
|