科目名 |
代数学本論I |
クラス |
− |
授業の概要 |
この授業では群論について学ぶ。小・中・高の学校教育で扱われる数の演算について理解を深めるとともに、代数学の基礎として群論の様々な基本事項を学ぶことが目的である。 |
授業の到達目標 |
・与えられた集合と演算の組が群であるかを判定できる。 ・群の演算表が書ける。 ・群の部分集合が部分群であるかを判定できる。 ・群の間の写像が準同型であるかを判定できる。 ・剰余群の演算を正しく実行できる。 ・群が作用する集合の元の軌道を計算できる。 |
授業計画 |
回 |
内容 |
1 | 群の定義 |
2 | 群の基本性質 |
3 | 環・体の定義 |
4 | 部分群 |
5 | 生成系 |
6 | 元の位数 |
7 | 準同型と同型 |
8 | 同値関係と剰余類 |
9 | ラグランジュの定理 |
10 | 正規部分群 |
11 | 剰余群 |
12 | 群の直積 |
13 | 準同型定理 |
14 | 部分群の対応 |
15 | 群の作用 |
|
テキスト・参考書 |
参考書 「代数学1 群論入門」雪江明彦(著)日本評論社 |
自学自習についての情報 |
講義内容についてよく復習すること。また、課題やレポートを利用して問題演習を行うこと。 |
授業の形式 |
講義と演習 |
アクティブラーニングに関する情報 |
講義中の質問や演習問題に対して、学生間で議論して理解を深める。 |
評価の方法(評価の配点比率と評価の要点) |
課題30%、期末試験70% |
その他(授業アンケートへのコメント含む) |
代数学序論I・IIを受講していることが望ましい。 |
担当講師についての情報(実務経験) |
海外と国内の大学の研究員、三重大学教育学部の准教授を経て、2024年に京都教育大学の准教授として着任。専門は代数学。 |